Multitask Learning of Biophysically-Detailed Neuron Models

Author:

Verhellen Jonas,Beshkov KosioORCID,Amundsen Sebastian,Ness Torbjørn V.ORCID,Einevoll Gaute T.

Abstract

AbstractThe human brain operates at multiple levels, from molecules to circuits, and understanding these complex processes requires integrated research efforts. Simulating biophysically-detailed neuron models is a computationally expensive but effective method for studying local neural circuits. Recent innovations have shown that artificial neural networks (ANNs) can accurately predict the behaviour of these detailed models in terms of spikes, electrical potentials, and optical readouts. While these methods have the potential to accelerate large network simulations by several orders of magnitude compared to conventional differential equation based modelling, they currently only predict voltage outputs for the soma or a select few neuron compartments. Our novel approach, based on enhanced state-of-the-art architectures for multitask learning (MTL), allows for the simultaneous prediction of membrane potentials in each compartment of a neuron model, at a speed of up to two orders of magnitude faster than classical simulation methods. By predicting all membrane potentials together, our approach not only allows for comparison of model output with a wider range of experimental recordings (patch-electrode, voltage-sensitive dye imaging), it also provides the first stepping stone towards predicting local field potentials (LFPs), electroencephalogram (EEG) signals, and magnetoencephalography (MEG) signals from ANN-based simulations. It further presents a challenging benchmark for MTL architectures due to the large amount of data involved, the presence of correlations between neighbouring compartments, and the non-Gaussian distribution of membrane potentials.

Publisher

Cold Spring Harbor Laboratory

Reference62 articles.

1. Abadi, M. , Agarwal, A. , Barham, P. , Brevdo, E. , Chen, Z. , Citro, C. , Corrado, G. S. , Davis, A. , Dean, J. , Devin, M. , Ghemawat, S. , Goodfellow, I. , Harp, A. , Irving, G. , Isard, M. , Jia, Y. , Jozefowicz, R. , Kaiser, L. , Kudlur, M. , Levenberg, J. , Mané, D. , Monga, R. , Moore, S. , Murray, D. , Olah, C. , Schuster, M. , Shlens, J. , Steiner, B. , Sutskever, I. , Talwar, K. , Tucker, P. , Vanhoucke, V. , Vasudevan, V. , Viégas, F. , Vinyals, O. , Warden, P. , Wattenberg, M. , Wicke, M. , Yu, Y. , and Zheng, X. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software available from tensorflow.org.

2. Heterogeneous multi-task learning with expert diversity;IEEE/ACM Transactions on Computational Biology and Bioinformatics,2022

3. Bai, S. , Kolter, J. Z. , and Koltun, V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271 (2018).

4. Single cortical neurons as deep artificial neural networks;Neuron,2021

5. Systematic Integration of Structural and Functional Data into Multi-scale Models of Mouse Primary Visual Cortex

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3