1. Abadi, M. , Agarwal, A. , Barham, P. , Brevdo, E. , Chen, Z. , Citro, C. , Corrado, G. S. , Davis, A. , Dean, J. , Devin, M. , Ghemawat, S. , Goodfellow, I. , Harp, A. , Irving, G. , Isard, M. , Jia, Y. , Jozefowicz, R. , Kaiser, L. , Kudlur, M. , Levenberg, J. , Mané, D. , Monga, R. , Moore, S. , Murray, D. , Olah, C. , Schuster, M. , Shlens, J. , Steiner, B. , Sutskever, I. , Talwar, K. , Tucker, P. , Vanhoucke, V. , Vasudevan, V. , Viégas, F. , Vinyals, O. , Warden, P. , Wattenberg, M. , Wicke, M. , Yu, Y. , and Zheng, X. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software available from tensorflow.org.
2. Heterogeneous multi-task learning with expert diversity;IEEE/ACM Transactions on Computational Biology and Bioinformatics,2022
3. Bai, S. , Kolter, J. Z. , and Koltun, V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271 (2018).
4. Single cortical neurons as deep artificial neural networks;Neuron,2021
5. Systematic Integration of Structural and Functional Data into Multi-scale Models of Mouse Primary Visual Cortex