Adaptive Regularized Tri-Factor Non-Negative Matrix Factorization for Cell Type Deconvolution

Author:

Liu TianyiORCID,Liu Chuwen,Li Quefeng,Zheng Xiaojing,Zou Fei

Abstract

Motivation: Accurate deconvolution of cell types from bulk gene ex- pression is crucial for understanding cellular compositions and uncovering cell-type specific differential expression and physiological states of diseased tissues. Existing deconvolution methods have limitations, such as requiring complete cellular gene expression signatures or neglecting partial biological information. Moreover, these methods often overlook varying cell-type mRNA amounts, leading to biased proportion estimates. Additionally, they do not effectively utilize valuable reference information from external studies, such as means and ranges of population cell-type proportions. Results: To address these challenges, we introduce an Adaptive Regular- ized Tri-factor non-negative matrix factorization approach for deconvolution (ARTdeConv). We rigorously establish the numerical convergence of our algorithm. Through benchmark simulations, we demonstrate the superior per- formance of ARTdeConv compared to state-of-the-art reference-free methods. In a real-world application, our method accurately estimates cell proportions, as evidenced by the nearly perfect Pearson's correlation between ARTdeConv estimates and flow cytometry measurements in a dataset from a trivalent influenza vaccine study. Moreover, our analysis of ARTdeConv estimates in COVID-19 patients reveals patterns consistent with important immunological phenomena observed in other studies. Availability and implementation: The proposed method, ARTdeConv, is implemented as an R package and can be accessed on GitHub for researchers and practitioners at https://github.com/gr8lawrence/ARTDeConv. Keywords: Cell-type deconvolution, Convergence analysis, Multiplicative update algorithm, Non-negative matrix factorization, RNA sequencing, Single cell data

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3