Targeted protein degradation systems to enhance Wnt signaling

Author:

Sampathkumar Parthasarathy,Jung Heekyung,Chen Hui,Zhang Zhengjian,Suen Nicholas,Yang Yiran,Huang Zhong,Lopez Tom,Benisch Robert,Lee Sung-Jin,Ye Jay,Yeh Wen-Chen,Li YangORCID

Abstract

AbstractMolecules that facilitate targeted protein degradation (TPD) offer great promise as novel therapeutics. Human hepatic lectin, asialoglycoprotein receptor (ASGR) is selectively expressed on hepatocytes. We have previously engineered an anti-ASGR1 antibody-mutant RSPO2 (RSPO2RA) fusion protein (called SWEETSTM) to drive tissue-specific degradation of ZNRF3/RNF43 E3-ubiquitin ligases, leading to hepatocyte specific enhanced Wnt signaling, proliferation, and restored liver function in mouse models. Such an antibody-RSPO2RA fusion molecule is currently in human clinical trials. In the current study, we identified two new ASGR1 and ASGR1/2 specific antibodies, 8M24 and 8G8. High-resolution crystal structures of ASGR1:8M24 and ASGR2:8G8 complexes revealed that these antibodies bind to distinct epitopes on the opposite sides of ASGR, away from the substrate binding site. Both antibodies enhanced Wnt-activity when assembled as SWEETS molecules with RSPO2RA through specific effects sequestering E3 ligases. In addition, 8M24-RSPO2RA and 8G8-RSPO2RA efficiently downregulated ASGR1 through TPD mechanisms. These results demonstrate the possibility of combining different therapeutic effects and different degradation mechanisms in a single molecule.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3