Brain encoding of naturalistic, continuous, and unpredictable tactile events

Author:

Castellani NicolòORCID,Federici AlessandraORCID,Fantoni MartaORCID,Ricciardi EmilianoORCID,Garbarini FrancescaORCID,Bottari DavideORCID

Abstract

AbstractStudies employing EEG to measure somatosensory responses have been typically optimized to compute event-related potentials in response to discrete events (ERPs). However, tactile interactions involve continuous processing of non-stationary inputs that change in location, duration, and intensity. To fill this gap, this study aims to demonstrate the possibility of measuring the neural tracking of continuous and unpredictable tactile information. Twenty-seven young adults (females = 15) were continuously and passively stimulated with a random series of gentle brushes on single fingers of each hand, which were covered from view. Thus, tactile stimulations were unique for each participant, and fingers were stimulated. An encoding model measured the degree of synchronization between brain activity and continuous tactile input, generating a temporal response function (TRF). Brain topographies associated with the encoding of each finger stimulation showed a contralateral response at central sensors starting at 50 ms and peaking at about 140 ms of lag, followed by a bilateral response at about 240 ms. A series of analyses highlighted that reliable tactile TRF emerged after just 3 minutes of stimulation. Our results demonstrated for the first time the possibility of using EEG to measure the neural tracking of a naturalistic, continuous, and unpredictable stimulation in the somatosensory domain. Crucially, this approach allows the study of brain activity following individualized, idiosyncratic tactile events. This approach can potentially foster novel ways for investigating tactile processing by replacing artificial laboratory-constrained tasks with ecological real-world interactions.Significant StatementThis study expanded the horizons of research conducted on neural tracking, opening the exploration of idiosyncratic tactile events occurring in the real world and overcoming constraints of laboratory tasks that typically rely on discrete events. We validated a protocol for the ecological investigations of continuous tactile processing of the hands. This paradigm-shifting study redefines the possible employment of the EEG for the cracking of somatosensory neural representations, which have been inaccessible so far. Our findings unravel coherent neural responses to continuous and naturalistic touch and represent a novel frontier in EEG applications to bodily senses.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3