OncogenicPIK3CAcorrupts growth factor signaling specificity

Author:

Madsen R.R.ORCID,Le Marois A.ORCID,Mruk O.ORCID,Voliotis M.ORCID,Yin S.,Sufi J.ORCID,Qin X.ORCID,Zhao S.J.ORCID,Gorczynska J.,Morelli D.,Davidson L.,Sahai E.ORCID,Korolchuk V.I.ORCID,Tape C.J.ORCID,Vanhaesebroeck B.ORCID

Abstract

AbstractPathological activation of the PI3K/AKT pathway is among the most frequent defects in human cancer and is also the cause of rare overgrowth disorders. Yet, there is currently no systematic understanding of the quantitative flow of information within PI3K/AKT signaling and how it is perturbed by disease-causing mutations. Here, we develop scalable, single-cell approaches for systematic analyses of signal processing within the PI3K pathway, enabling precise calculations of its information transfer for different growth factors. Using genetically-engineered human cell models with allele dose-dependent expression ofPIK3CAH1047R, we show that this oncogene is not a simple, constitutive pathway activator but a context-dependent modulator of extracellular signal transfer.PIK3CAH1047Rreduces information transmission downstream of IGF1 while selectively enhancing EGF-induced signaling and transcriptional responses. This leads to a gross reduction in signaling specificity, akin to “blurred” signal perception. The associated increase in signaling heterogeneity promotes phenotypic diversity in a human cervical cancer cell line model and in human induced pluripotent stem cells. Collectively, these findings and the accompanying methodological advances lay the foundations for a systematic mapping of the quantitative mechanisms of PI3K/AKT-dependent signal processing and phenotypic control in health and disease.One-sentence summarySingle-cell signaling and information theoretic analyses reveal that oncogenic PI3K/AKT activation leads to a gross reduction in signaling specificity, context-dependent EGF response amplification as well as increased phenotypic heterogeneity.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3