Trade-off between light deprivation and desiccation in intertidal seagrasses due to periodic tidal inundation and exposure: insights from a data-calibrated model

Author:

Wang Xinyan,Adams Matthew P.,Shao Dongdong

Abstract

AbstractMany seagrass species thrive in shallow intertidal zones globally, adapting to periodic tidal inundation and exposure with distinctive physiological traits and offering crucial ecosystem services. However, predicting the responses of intertidal seagrasses to external stressors is hampered by the complexity of the dynamic and harsh environments they occupy. Consequently, intertidal seagrass growth models, especially those incorporating dynamic physiological responses, are scarce in the literature. Our study comprehensively collated relevant data from the literature to parameterize the relationship between air exposure, seagrass leaf water content and photosynthetic efficiency to inform new growth rate functions for generalisable intertidal seagrass growth models. We tested the applicability of these model formulations for scenarios with varying physiological process assumptions, seagrass species, tidal conditions, meadow elevations and water turbidity. We found that neglecting air-exposed physiological responses (i.e., leaf water content loss and reduced photosynthetic efficiency) can substantially overestimate seagrass growth rates. We also observed a trade-off between light deprivation and desiccation on intertidal seagrass growth under specific tidal ranges and turbidity conditions. This can yield an “optimal” elevation where combined stressors of desiccation (increasing with meadow elevation) and light deprivation (decreasing with meadow elevation) are minimized. The predicted optimal elevation, i.e., the most suitable habitat for intertidal seagrass, moves upward as water turbidity increases. Our study provides both conceptual and quantitative guidance for ecological modellers to include air exposure responses of intertidal seagrasses in coastal ecosystem models. The model also helps to evaluate the viability of intertidal seagrass habitats and inform site selection for seagrass restoration.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3