Open Soil Spectral Library (OSSL): Building reproducible soil calibration models through open development and community engagement

Author:

Safanelli José L.ORCID,Hengl TomislavORCID,Parente LeandroORCID,Minarik RobertORCID,Bloom Dellena E.ORCID,Todd-Brown KatherineORCID,Gholizadeh AsaORCID,Mendes Wanderson de SousaORCID,Sanderman JonathanORCID

Abstract

AbstractSoil spectroscopy is a widely used method for estimating soil properties that are important to environmental and agricultural monitoring. However, a bottleneck to its more widespread adoption is the need for establishing large reference datasets for training machine learning (ML) models, which are called soil spectral libraries (SSLs). Similarly, the prediction capacity of new samples is also subject to the number and diversity of soil types and conditions represented in the SSLs. To help bridge this gap and enable hundreds of stakeholders to collect more affordable soil data by leveraging a centralized open resource, the Soil Spectroscopy for Global Good has created the Open Soil Spectral Library (OSSL). In this paper, we describe the procedures for collecting and harmonizing several SSLs that are incorporated into the OSSL, followed by exploratory analysis and predictive modeling. The results of 10-fold cross-validation with refitting show that, in general, mid-infrared (MIR)-based models are significantly more accurate than visible and near-infrared (VisNIR) or near-infrared (NIR) models. From independent model evaluation, we found that Cubist comes out as the best-performing ML algorithm for the calibration and delivery of reliable outputs (prediction uncertainty and representation flag). Although many soil properties are well predicted, total sulfur, extractable sodium, and electrical conductivity performed poorly in all spectral regions, with some other extractable nutrients and physical soil properties also performing poorly in one or two spectral regions (VisNIR or Neospectra NIR). Hence, the use of predictive models based solely on spectral variations has limitations. This study also presents and discusses several other open resources that were developed from the OSSL, aspects of opening data, current limitations, and future development. With this genuinely open science project, we hope that OSSL becomes the driver of the soil spectroscopy community to accelerate the pace of scientific discovery and innovation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3