Abstract
ABSTRACTCircular dorsal ruffles (CDRs), large-scale rounded membrane ruffles, function as precursors of macropinocytosis. We recently reported that CDRs are exposed in the Hep3B hepatocellular carcinoma cell line, while not in other hepatocellular carcinoma cell lines, indicating that the CDRs in Hep3B are associated with malignant potential. In this study, we investigated the cellular function of CDRs in Hep3B cells by focusing on the molecular mechanisms of the GTPase-activating protein ARAP1. ARAP1 was localized to the CDRs, the sizes of which were reduced by deletion of this protein. High-resolution scanning electron micrographs revealed that CDRs comprise small vertical lamellipodia, the expression pattern of which was disrupted in ARAP1 KO cells. Extracellular solute uptake, rate of cell growth, and malignant potential were attenuated in the KO cells. ARAP1 is also localized in Hep3B cell mitochondria, although not in those of the Huh7 hepatocellular carcinoma cell line. On the basis of these findings, we propose that the aberrant expression of ARAP1 in Hep3B cells modulates CDRs, thereby resulting in an excess uptake of nutrients as an initial event in cancer development.SUMMARY STATEMENTARAP1 regulates circular dorsal ruffles (CDRs) in the Hep3B HCC cell line and deletion of this protein attenuates malignant potential, thereby indicating the involvement of CDRs in cancer development.
Publisher
Cold Spring Harbor Laboratory