MetageNN: a memory-efficient neural network taxonomic classifier robust to sequencing errors and missing genomes

Author:

da Silva Rafael PeresORCID,Suphavilai ChayapornORCID,Nagarajan NiranjanORCID

Abstract

AbstractBackgroundWith the rapid increase in throughput of long-read sequencing technologies, recent studies have explored their potential for taxonomic classification by using alignment-based approaches to reduce the impact of higher sequencing error rates. While alignment-based methods are generally slower, k-mer-based taxonomic classifiers can overcome this limitation, potentially at the expense of lower sensitivity for strains and species that are not in the database.ResultsWe present MetageNN, a memory-efficient long-read taxonomic classifier that is robust to sequencing errors and missing genomes. MetageNN is a neural network model that uses short k-mer profiles of sequences to reduce the impact of distribution shifts on error-prone long reads. Benchmarking MetageNN against other machine learning approaches for taxonomic classification (GeNet) showed substantial improvements with long-read data (20% improvement in F1 score). By utilizing nanopore sequencing data, MetageNN exhibits improved sensitivity in situations where the reference database is incomplete. It surpasses the alignment-based MetaMaps and MEGAN-LR, as well as the k-mer-based Kraken2 tools, with improvements of 100%, 36%, and 23% respectively at the read-level analysis. Notably, at the community level, MetageNN consistently demonstrated higher sensitivities than the previously mentioned tools. Furthermore, MetageNN requires < 1/4thof the database storage used by Kraken2, MEGAN-LR and MMseqs2 and is >7x faster than MetaMaps and GeNet and >2x faster than MEGAN-LR and MMseqs2.ConclusionThis proof of concept work demonstrates the utility of machine-learning-based methods for taxonomic classification using long reads. MetageNN can be used on sequences not classified by conventional methods and offers an alternative approach for memory-efficient classifiers that can be optimized further.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3