Interictal intracranial EEG asymmetry lateralizes temporal lobe epilepsy

Author:

Conrad Erin C.ORCID,Lucas Alfredo,Ojemann William K.S.,Aguila Carlos A.,Mojena Marissa,LaRocque Joshua J.,Pattnaik Akash R.,Gallagher Ryan,Greenblatt Adam,Tranquille Ashley,Parashos Alexandra,Gleichgerrcht Ezequiel,Bonilha Leonardo,Litt Brian,Sinha Saurabh,Ungar Lyle,Davis Kathryn A.

Abstract

ABSTRACTPatients with drug-resistant temporal lobe epilepsy often undergo intracranial EEG recording to capture multiple seizures in order to lateralize the seizure onset zone. This process is associated with morbidity and often ends in postoperative seizure recurrence. Abundant interictal (between-seizure) data is captured during this process, but these data currently play a small role in surgical planning. Our objective was to predict the laterality of the seizure onset zone using interictal (between-seizure) intracranial EEG data in patients with temporal lobe epilepsy. We performed a retrospective cohort study (single-center study for model development; two-center study for model validation). We studied patients with temporal lobe epilepsy undergoing intracranial EEG at the University of Pennsylvania (internal cohort) and the Medical University of South Carolina (external cohort) between 2015 and 2022. We developed a logistic regression model to predict seizure onset zone laterality using interictal EEG. We compared the concordance between the model-predicted seizure onset zone laterality and the side of surgery between patients with good and poor surgical outcomes. 47 patients (30 women; ages 20-69; 20 left-sided, 10 right-sided, and 17 bilateral seizure onsets) were analyzed for model development and internal validation. 19 patients (10 women; ages 23-73; 5 left-sided, 10 right-sided, 4 bilateral) were analyzed for external validation. The internal cohort cross-validated area under the curve for a model trained using spike rates was 0.83 for a model predicting left-sided seizure onset and 0.68 for a model predicting right-sided seizure onset. Balanced accuracies in the external cohort were 79.3% and 78.9% for the left- and right-sided predictions, respectively. The predicted concordance between the laterality of the seizure onset zone and the side of surgery was higher in patients with good surgical outcome. In conclusion, interictal EEG signatures are distinct across seizure onset zone lateralities. Left-sided seizure onsets are easier to distinguish than right-sided onsets. A model trained on spike rates accurately identifies patients with left-sided seizure onset zones and predicts surgical outcome.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3