Combined multiplex panel test results are a poor estimate of disease prevalence without adjustment for test error

Author:

Challen RobertORCID,Chatzilena AnastasiaORCID,Qian GeorgeORCID,Oben Glenda,Kwiatkowska RachelORCID,Hyams CatherineORCID,Finn AdamORCID,Tsaneva-Atanasova KrasimiraORCID,Danon LeonORCID

Abstract

AbstractMultiplex panel tests identify many individual pathogens at once, using a set of component tests. In some panels the number of components can be large. If the panel is detecting causative pathogens for a single syndrome or disease then we might estimate the burden of that disease by combining the results of the panel, for example determining the prevalence of pneumococcal pneumonia as caused by many individual pneumococcal serotypes. When we are dealing with multiplex test panels with many components, test error in the individual components of a panel, even when present at very low levels, can cause significant overall error. Uncertainty in the sensitivity and specificity of the individual tests, and statistical fluctuations in the numbers of false positives and false negatives, will cause large uncertainty in the combined estimates of disease prevalence. In many cases this can be a source of significant bias. In this paper we develop a mathematical framework to characterise this issue, present novel statistical methods that adjust for this bias and quantify uncertainty, and use simulation to test these methods. As multiplex testing becomes more commonly used for screening in routine clinical practice, accumulation of test error due to the combination of large numbers of test results needs to be identified and corrected for.Author summaryDuring analysis of pneumococcal incidence data obtained from serotype specific multiplex urine antigen testing, we identified that despite excellent test sensitivity and specificity, the small error rate in each individual serotype test has the potential to compound and cause large uncertainty in the resulting estimates of pneumococcal prevalence, obtained by combining individual results. This limits the accuracy of estimates of the burden of disease caused by vaccine preventable pneumococcal serotypes, and in certain situations can produce marked bias.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3