Disease progression and clinical outcomes in latent osteoarthritis phenotypes: Data from the Osteoarthritis Initiative

Author:

Huang Zeyu,Bucklin Mary A.,Guo Weihua,Martin John T.

Abstract

AbstractThe prevalence of knee osteoarthritis (OA) is widespread and the heterogeneous patient factors and clinical symptoms in OA patients impede developing personalized treatments for OA patients. In this study, we used unsupervised and supervised machine learning to organize the heterogeneity in knee OA patients and predict disease progression in individuals from the Osteoarthritis Initiative (OAI) dataset. We identified four distinct knee OA phenotypes using unsupervised learning that were defined by nutrition, disability, stiffness, and pain (knee and back) and were strongly related to disease fate. Interestingly, the absence of supplemental vitamins from an individual’s diet was protective from disease progression. Moreover, we established a phenotyping tool and prognostic model from 5 variables (WOMAC disability score of the right knee, WOMAC total score of the right knee, WOMAC total score of the left knee, supplemental vitamins and minerals frequency, and antioxidant combination multivitamins frequency) that can be utilized in clinical practice to determine the risk of knee OA progression in individual patients. We also developed a prognostic model to estimate the risk for total knee replacement and provide suggestions for modifiable variables to improve long-term knee health. This combination of unsupervised and supervised data-driven tools provides a framework to identify knee OA phenotype in a clinical scenario and personalize treatment strategies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3