Auditory training alters the cortical representation of both learned and task irrelevant sound features

Author:

Atilgan Huriye,Walker Kerry MORCID,King Andrew J.,Schnupp Jan W.,Bizley Jennifer K.ORCID

Abstract

AbstractAuditory learning is supported by long-term changes in the neural processing of sound. We mapped neural sensitivity to timbre, pitch and location in animals trained to discriminate the identity of artificial vowels based on their spectral timbre in a two-alternative forced choice (T2AFC, n=3, female ferrets) or to detect changes in fundamental frequency or timbre of repeating artificial vowels in a go/no-go task (n=2 female ferrets). Neural responses were recorded under anaesthesia in two primary cortical fields and two tonotopically organised non-primary fields. Responses were compared these data to that of naïve control animals. We observed that in both groups of trained animals the overall sensitivity to sound timbre was reduced across three cortical fields but enhanced in non-primary field PSF. Neural responses in trained animals were able to discriminate vowels that differed in either their first or second formant frequency unlike control animals whose sensitivity was mostly driven by changes in the second formant. Neural responses in the T2AFC animals, who were required to generalise across pitch when discriminating timbre, became less modulated by fundamental frequency, while those in the go/no-go animals were unchanged relative to controls. Finally, both trained groups showed increased spatial sensitivity and altered tuning. Trained animals showed an enhanced representation of the midline, where the speaker was located in the experimental chamber. Overall, these results demonstrate training elicited widespread changes in the way in which auditory cortical neurons represent complex sounds with changes in how both task relevant and task-irrelevant features were represented.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3