State-of-the-RNArt: benchmarking current methods for RNA 3D structure prediction

Author:

Bernard ClémentORCID,Postic GuillaumeORCID,Ghannay SaharORCID,Tahi FarizaORCID

Abstract

RNAs are essential molecules involved in numerous biological functions. Understanding RNA functions requires the knowledge of their 3D structures. Computational methods have been developed for over two decades to predict the 3D conformations from RNA sequences. These computational methods have been widely used and are usually categorised as eitherab initioor template-based. The performances remain to be improved. Recently, the rise of deep learning has changed the sight of novel approaches. Deep learning methods are promising, but the adaptation to RNA 3D structure prediction remains at stake. In this work, we give a brief review of theab initio, template-based and novel deep learning approaches. We highlight the different available tools and provide a benchmark on nine approaches using the RNA-Puzzles dataset. We provide an online dashboard that shows the predictions made by benchmarked models, freely available on the EvryRNA platform:https://evryrna.ibisc.univ-evry.fr.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3