DNDesign: Enhancing Physical Understanding of Protein Inverse Folding Model via Denoising

Author:

Lee YouhanORCID,Kim Jaehoon

Abstract

AbstractBased on the central dogma that protein structure determines its functionality, an important approach for protein sequence design is to identify promising sequences that fold into pre-designed structures based on domain knowledge. Numerous studies have introduced deep generative model-based inverse-folding, which utilizes various generative models to translate fixed backbones to corresponding sequences. In this work, we reveal that denoising training enables models to deeply capture the protein energy landscape, which previous models do not fully leverage. Based on this, we propose a novel Denoising-enhanced protein fixed backbone design (DNDesign), which combines conventional inverse-folding networks with a novel plug-in module, which learns the physical understanding via denoising training and transfers the knowledge to the entire network. Through extensive experiments, we demonstrate that DNDesign can easily be integrated into state-of-the-art models and improve performance in multiple modes, including auto-regressive, non-auto-regressive, and scaled-up scenarios. Furthermore, we introduce a fixed backbone conservation analysis based on potential energy changes, which confirms that DNDesign ensures more energetically favorable inverse-folding.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3