Abstract
AbstractDictionary learning (DL), implemented via matrix factorization (MF), is commonly used in computational biology to tackle ubiquitous clustering problems. The method is favored due to its conceptual simplicity and relatively low computational complexity. However, DL algorithms produce results that lack interpretability in terms of real biological data. Additionally, they are not optimized for graph-structured data and hence often fail to handle them in a scalable manner.In order to address these limitations, we propose a novel DL algorithm calledonline convex network dictionary learning(online cvxNDL). Unlike classical DL algorithms, online cvxNDL is implemented via MF and designed to handle extremely large datasets by virtue of its online nature. Importantly, it enables the interpretation of dictionary elements, which serve as cluster representatives, through convex combinations of real measurements. Moreover, the algorithm can be applied to data with a network structure by incorporating specialized subnetwork sampling techniques.To demonstrate the utility of our approach, we apply cvxNDL on 3D-genome RNAPII ChIA-Drop data with the goal of identifying important long-range interaction patterns (long-range dictionary elements). ChIA-Drop probes higher-order interactions, and produces data in the form of hypergraphs whose nodes represent genomic fragments. The hyperedges represent observed physical contacts. Our hypergraph model analysis has the objective of creating an interpretable dictionary of long-range interaction patterns that accurately represent global chromatin physical contact maps. Through the use of dictionary information, one can also associate the contact maps with RNA transcripts and infer cellular functions.To accomplish the task at hand, we focus on RNAPII-enriched ChIA-Drop data fromDrosophila MelanogasterS2 cell lines. Our results offer two key insights. First, we demonstrate that online cvxNDL retains the accuracy of classical DL (MF) methods while simultaneously ensuring unique interpretability and scalability. Second, we identify distinct collections of proximal and distal interaction patterns involving chromatin elements shared by related processes across different chromosomes, as well as patterns unique to specific chromosomes. To associate the dictionary elements with biological properties of the corresponding chromatin regions, we employ Gene Ontology (GO) enrichment analysis and perform multiple RNA coexpression studies.Availability and ImplementationThe code and test datasets are available at:\https://github.com/rana95vishal/chromatin_DL/Author summaryWe introduce a novel method for dictionary learning termedonline convex Network Dictionary Learning(online cvxNDL). The method operates in an online manner and utilizes representative subnetworks of a network dataset as dictionary elements. A key feature of online cvxNDL is its ability to work with graph-structured data and generate dictionary elements that represent convex combinations of real data points, thus ensuring interpretability.Online cvxNDL is used to investigate long-range chromatin interactions in S2 cell lines ofDrosophila Melanogasterobtained through RNAPII ChIA-Drop measurements represented as hypergraphs. The results show that dictionary elements can accurately and efficiently reconstruct the original interactions present in the data, even when subjected to convexity constraints. To shed light on the biological relevance of the identified dictionaries, we perform Gene Ontology enrichment and RNA-seq coexpression analyses. These studies uncover multiple long-range interaction patterns that are chromosome-specific. Furthermore, the findings affirm the significance of convex dictionaries in representing TADs cross-validated by imaging methods (such as 3-color FISH (fluorescence in situ hybridization)).
Publisher
Cold Spring Harbor Laboratory
Reference37 articles.
1. Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries
2. Sparse representation for color image restoration;IEEE Transactions on image processing,2007
3. Non-negative matrix factorization with α-divergence;Pattern Recognition Letters,2008
4. Multitask sparse nonnegative matrix factorization for joint spectral–spatial hyperspectral imagery denoising;IEEE Transactions on Geoscience and Remote Sensing,2014
5. Community detection algorithm based on nonnegative matrix factorization and pairwise constraints;Physica A: Statistical Mechanics and its Applications,2020