Sweet and fatty symbionts: photosynthetic productivity and carbon storage boosted in microalgae within a host

Author:

Catacora-Grundy A.ORCID,Chevalier F.,Yee D.ORCID,LeKieffre C.ORCID,Schieber N. L.,Schwab Y.ORCID,Gallet B.ORCID,Jouneau P.H.ORCID,Curien G.ORCID,Decelle J.ORCID

Abstract

AbstractSymbiosis between a host and intracellular eukaryotic microalgae is a widespread life strategy in aquatic ecosystems. This partnership is considered to be mainly energized by the photosynthetically-derived carbon energy of microalgal symbionts. A major question is whether microalgae increase their photosynthetic production and decrease carbon storage in order to maximize carbon translocation to their host. By combining three-dimensional subcellular imaging and physiological analyses, we show that the photosynthetic machinery (chloroplast and CO2-fixing pyrenoid) of the symbiotic microalgaMicractinium conductrixsignificantly expands inside their host (the ciliateParamecium bursaria) compared to the free-living state. This is accompanied by a 13-fold higher quantity of Rubisco enzymes and 16-fold higher carbon fixation rate. Time-resolved subcellular imaging revealed that photosynthetically-derived carbon is first allocated to starch during the day, with five times higher production in symbiosis despite low growth. Nearly half of the carbon stored in starch is consumed overnight and some accumulates in lipid droplets, which are 20-fold more voluminous in symbiotic microalgae. We also show that carbon is transferred to the host and hypothesize that much of this is respired by the high density of surrounding host mitochondria. We provide evidence that the boosted photosynthetic production of symbiotic microalgae could be explained by the energetic demands of the host. Overall, this study provides an unprecedented view of the subcellular remodeling and dynamics of carbon metabolism of microalgae inside a host, highlighting the potentially key role of the source-sink relationship in aquatic photosymbiosis.Significance statementSymbiotic interactions between a heterotrophic host and intracellular microalgae are widespread in aquatic ecosystems and are considered to be energized by the photosynthetically-derived carbon energy. However, little is known on the impact of symbiosis on the algal bioenergetics (e.g. carbon production and storage). This study reveals the morphological and physiological changes of a microalga inside a host at the subcellular scale over the day. We show that the photosynthetic machinery expands and carbon fixation and storage are boosted in symbiotic microalgae beyond their growth needs. This high photosynthetic production is very likely enhanced by the host energetic demands. Our findings advance our basic understanding of photosymbiosis and open new perspectives on the mechanisms and drivers of metabolic exchange between partners.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3