Characterization ofNEBmutations in patients reveals novel nemaline myopathy disease mechanisms and omecamtiv mecarbil force effects

Author:

Karimi Esmat,van der Borgh Mila,Lindqvist Johan,Gohlke Jochen,Hourani Zaynab,Kolb Justin,Cossette Stacy,Lawlor Michael W.,Ottenheijm Coen,Granzier Henk

Abstract

AbstractNebulin, a critical protein of the skeletal muscle thin filament, plays important roles in physiological processes such as regulating thin filament length (TFL), cross-bridge cycling, and myofibril alignment. Mutations in the nebulin gene (NEB) cause NEB-based nemaline myopathy (NEM2), a genetically heterogeneous disorder characterized by hypotonia and muscle weakness, currently lacking therapies targeting the underlying pathological mechanisms. In this study, we examined a cohort of ten NEM2 patients, each with unique mutations, aiming to understand their impact on mRNA, protein, and functional levels. Results show that truncation mutations affectNEBmRNA stability and lead to nonsense-mediated decay of the mutated transcript. Moreover, a high incidence of cryptic splice site activation was found in patients with splicing mutations which is expected to disrupt the actin-binding sites of nebulin. Determination of protein levels revealed patients with relatively normal nebulin levels and others with markedly reduced nebulin. We observed a positive relation between the reduction in nebulin and a reduction in TFL, and a positive relation between the reduction in nebulin level and the reduction in tension (both maximal and submaximal tension). Interestingly, our study revealed a duplication mutation in nebulin that resulted in a larger nebulin protein and longer TFL. Additionally, we investigated the effect of Omecamtiv mecarbil (OM), a small-molecule activator of cardiac myosin, on force production of type I muscle fibers of NEM2 patients. OM treatment substantially increased submaximal tension across all NEM2 patients ranging from 87-318%, with the largest effects in patients with the lowest level of nebulin. In summary, this study indicates that post-transcriptional or post-translational mechanisms regulate nebulin expression. Moreover, we propose that the pathomechanism of NEM2 involves not only shortened but also elongated thin filaments, along with the disruption of actin-binding sites resulting from splicing mutations. Significantly, our findings highlight the potential of OM treatment to improve skeletal muscle function in NEM2 patients, especially those with large reductions in nebulin levels.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3