Spatial segregation and aging of metabolic processes underlie phenotypic heterogeneity in mycobacteria

Author:

Gwin Celena M.ORCID,Gupta Kuldeepkumar R.ORCID,Lu Yao,Shao Lin,Rego E. HesperORCID

Abstract

Individual cells within clonal populations of mycobacteria vary in size, growth rate, and antibiotic susceptibility. Heterogeneity is, in part, determined by LamA, a protein found exclusively in mycobacteria. LamA localizes to sites of new cell wall synthesis where it recruits proteins important for polar growth and establishing asymmetry. Here, we report that in addition to this function, LamA interacts with complexes involved in oxidative phosphorylation (OXPHOS) at a subcellular location distinct from cell wall synthesis. Importantly, heterogeneity depends on a unique extension of the mycobacterial ATP synthase, and LamA mediates the coupling between ATP production and cell growth in single cells. Strikingly, as single cells age, concentrations of proteins important for oxidative phosphorylation become less abundant, and older cells rely less on oxidative phosphorylation for growth. Together, our data reveal that central metabolism is spatially organized within a single mycobacterium and varies within a genetically identical population of mycobacteria. Designing therapeutic regimens to account for this heterogeneity may help to treat mycobacterial infections faster and more completely.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3