AI without networks

Author:

Mitra Partha P.ORCID,Sire ClémentORCID

Abstract

AbstractContemporary Artificial Intelligence (AI) stands on two legs: large training data corpora and many-parameter artificial neural networks (ANNs). The data corpora are needed to represent the complexity and heterogeneity of the world. The role of the networks is less transparent due to the obscure dependence of the network parameters and outputs on the training data and inputs. This raises problems, ranging from technical-scientific to legal-ethical. We hypothesize that a transparent approach to machine learning is possible without using networks at all. By generalizing a parameter-free, statistically consistent data interpolation method, which we analyze theoretically in detail, we develop a framework for generative modeling. Given the growing usage of machine learning techniques in science, we demonstrate this framework with an example from the field of animal behavior. We applied this generative Hilbert framework to the trajectories of small groups of swimming fish. The framework outperforms previously developed state-of-the-art traditional mathematical behavioral models and contemporary ANN-based models in reproducing naturalistic behaviors. We do not suggest that the proposed framework will outperform networks in all applications, as over-parameterized networks can interpolate. However, our framework is theoretically sound, transparent, deterministic and parameter free: it does not require any compute-expensive training, does not involve optimization, has no model selection, and is easily reproduced and ported. We also propose an easily computed method of credit assignment based on this framework that could help address ethical-legal challenges raised by generative AI.

Publisher

Cold Spring Harbor Laboratory

Reference61 articles.

1. Deep learning

2. Goodfellow, I. , Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016).

3. A survey of large language models;arXiv preprint,2023

4. Mastering the game of Go without human knowledge

5. Language models are few-shot learners;Advances in neural information processing systems,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3