Leveraging large language models for data analysis automation

Author:

Jansen Jacqueline A,Manukyan Artür,Al Khoury Nour,Akalin AltunaORCID

Abstract

AbstractData analysis is constrained by a shortage of skilled experts, particularly in biology, where detailed data interpretation is vital for understanding complex biological processes and developing new treatments and diagnostics. To address this, we developedmergen, an R package that leverages Large Language Models (LLMs) for data analysis code generation and execution. Our primary goal is to enable humans to conduct data analysis by simply describing their objectives and the desired analyses for specific datasets through clear text. Our approach improves code generation via specialized prompt engineering and error feedback mechanisms. In addition, our system can execute the data analysis workflows prescribed by the LLM providing the results of the data analysis workflow for human review. We evaluated the performance of this data analysis system using various data analysis tasks. Our evaluation revealed that while LLMs effectively generate code for some data analysis tasks, challenges remain in executable code generation, especially for complex data analysis tasks. Our study contributes to a better understanding of LLM capabilities and limitations, providing software infrastructure and practical insights for their effective integration into data analysis workflows.

Publisher

Cold Spring Harbor Laboratory

Reference17 articles.

1. The human side of big data: Understanding the skills of the data scientist in education and industry

2. Data challenges of biomedical researchers in the age of omics;PeerJ,2018

3. Chen M , Tworek J , Jun H , Yuan Q , Pinto HP de O , Kaplan J , et al. Evaluating Large Language Models Trained on Code [Internet]. arXiv.org. 2021. Available from: https://arxiv.org/abs/2107.03374

4. Touvron H , Martin L , Stone K , Albert P , Almahairi A , Babaei Y , et al. Llama 2: Open Foundation and Fine-Tuned Chat Models [Internet]. arXiv.org. 2023. Available from: https://arxiv.org/abs/2307.09288

5. Dakhel AM , Majdinasab V , Nikanjam A , Khomh F , Desmarais MC , Ming Z , et al. GitHub Copilot AI pair programmer: Asset or Liability? [Internet]. arXiv.org. 2022. Available from: https://arxiv.org/abs/2206.15331

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3