Exposure and resistance to lantibiotics impact microbiota composition and function

Author:

Zhang Zhenrun J.ORCID,Cole Cody,Lin Huaiying,Wu Chunyu,Haro Fidel,McSpadden Emma,van der Donk Wilfred A,Pamer Eric G.

Abstract

AbstractThe intestinal microbiota is composed of hundreds of distinct microbial species that interact with each other and their mammalian host. Antibiotic exposure dramatically impacts microbiota compositions and leads to acquisition of antibiotic-resistance genes. Lantibiotics are ribosomally synthesized and post-translationally modified peptides produced by some bacterial strains to inhibit the growth of competing bacteria. Nisin A is a lantibiotic produced byLactococcus lactisthat is commonly added to food products to reduce contamination with Gram-positive pathogens. Little is known, however, about lantibiotic-resistance of commensal bacteria inhabiting the human intestine. Herein, we demonstrate that Nisin A administration to mice alters fecal microbiome compositions and the concentration of taurine-conjugated primary bile acids. Lantibiotic Resistance System genes (LRS) are encoded by lantibiotic-producing bacterial strains but, we show, are also prevalent in microbiomes across human cohorts spanning vastly different lifestyles and 5 continents. Bacterial strains encoding LRS have enhancedin vivofitness upon dietary exposure to Nisin A but reduced fitness in the absence of lantibiotic pressure. Differential binding of host derived, secreted IgA contributes to fitness discordance between bacterial strains encoding or lacking LRS. Although LRS are associated with mobile genetic elements, sequence comparisons of LRS encoded by distinct bacterial species suggest they have been long-term components of their respective genomes. Our study reveals the prevalence, abundance and physiologic significance of an underappreciated subset of antimicrobial resistance genes encoded by commensal bacterial species constituting the human gut microbiome, and provides insights that will guide development of microbiome augmenting strategies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3