Analysis of bacteria, inflammation, and exudation in epidermal suction blister wounds reveals dynamic changes during wound healing

Author:

Lundgren Sigrid,Petruk Ganna,Wallblom Karl,Cardoso José FP,Strömdahl Ann-Charlotte,Forsberg Fredrik,Luo Congyu,Nilson Bo,Hartman Erik,Fisher JaneORCID,Puthia Manoj,Saleh Karim,Schmidtchen ArturORCID

Abstract

AbstractThe skin microbiome undergoes dynamic changes during different phases of wound healing, however the role of bacteria in the wound healing process remains poorly described. In this study, we aimed to determine how wound bacteria develop over time in epidermal wounds, and how they interact with inflammatory processes during wound healing. To this end, we analyzed wound fluid and swab samples collected from epidermal suction blister wounds in healthy volunteers. We found that bacterial numbers, measured in swabs and dressing fluid, increased rapidly after wounding and stabilized by day 8. The composition of bacterial species identified by MALDI-TOF mass spectrometry differed between wounds, but generally consisted primarily of commensal bacteria and remained largely stable over time. Inflammation and neutrophil activity, measured by quantification of cytokines and neutrophil proteins in dressing fluid, peaked on day 5. Exudation, measured by quantification of protein content in dressings, also peaked at this time and strongly correlated with cytokine and neutrophil protein levels. Inflammation, neutrophil activity, and exudation were not correlated with bacterial counts at any time, indicating that in normally healing wounds, these processes are primarily driven by the host and are independent of colonizing bacteria. Our analysis provides a comprehensive understanding of epidermal wound healing dynamics in the host and the role of the microbiome in healthy wound healing.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3