Higher-order connectomics of human brain function reveals local topological signatures of task decoding, individual identification, and behavior

Author:

Santoro AndreaORCID,Battiston FedericoORCID,Lucas MaximeORCID,Petri GiovanniORCID,Amico EnricoORCID

Abstract

AbstractTraditional models of human brain activity often represent it as a network of pairwise interactions between brain regions. Going beyond this limitation, recent approaches have been proposed to infer higher-order interactions from temporal brain signals involving three or more regions. However, to this day it remains unclear whether methods based on inferred higher-order interactions outperform traditional pairwise ones for the analysis of fMRI data. To address this question, we conducted a comprehensive analysis using fMRI time series of 100 unrelated subjects from the Human Connectome Project. We show that higher-order approaches greatly enhance our ability to decode dynamically between various tasks, to improve the individual identification of unimodal and transmodal functional subsystems, and to strengthen significantly the associations between brain activity and behavior. Overall, our approach sheds new light on the higher-order organization of fMRI time series, improving the characterization of dynamic group dependencies in rest and tasks, and revealing a vast space of unexplored structures within human functional brain data, which may remain hidden when using traditional pairwise approaches.

Publisher

Cold Spring Harbor Laboratory

Reference85 articles.

1. “The Human Connectome: A Structural Description of the Human Brain;PLoS Computational Biology,2005

2. O. Sporns , Networks of the Brain (MIT press, 2010).

3. “The human brain is intrinsically organized into dynamic, anticorrelated functional networks;Proceedings of the National Academyof Sciences,2005

4. A. Fornito , A. Zalesky , and E. Bullmore , Fundamentals of Brain Network Analysis (Academic Press, 2016).

5. Complex networks: Structure and dynamics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3