Causal inference for multiple risk factors and diseases from genomics data

Author:

Machnik Nick,Mahmoudi Mahdi,Krätschmer Ilse,Bauer Markus J.,Robinson Matthew R.

Abstract

AbstractIn high dimensional observational genotype-phenotype data, complex relationships and confounders make causal learning difficult. Here, we bridge a gap between genetic epidemiology and statistical causal inference, to demonstrate that graphical inference can fine-map trait-specific causal DNA variants and identify risk factors that are most likely to have a direct causal effect on a disease outcome. Our CI-GWAS approach learns a single graph representing the causal relationships among millions of DNA variants and 17 traits in less than 10 minutes on standard GPU architecture. We find over 100 trait-specific DNA variants that are exclusively exonic, with clear pathways from trait-specific “core genes” to each outcome. We separate pleiotropy from linkage to find evidence that PCSK9, LPA, and RP1-81D8.3 are pleiotropic for cardiovascular disease (CAD) with blood cholesterol, triglycerides, and low-density lipoprotiens respectively. CI-GWAS accounts for pleiotropy and selects waist-hip ratio, alcohol consumption and smoking as adjacent to CAD, with many other variables having complex paths linked through these risk factors. Our work facilitates extensive investigation of potential causal hypotheses across a wide-range of data.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3