Norovirus NS1/2 protein increases glutaminolysis for efficient viral replication

Author:

Hafner Adam,Meurs Noah,Garner Ari,Azar Elaine,Passalacqua Karla D.,Nagrath Deepak,Wobus Christiane E.ORCID

Abstract

AbstractViruses are obligate intracellular parasites that rely on host cell metabolism for successful replication. Thus, viruses rewire host cell pathways involved in central carbon metabolism to increase the availability of building blocks for replication. However, the underlying mechanisms of virus-induced alterations to host metabolism are largely unknown. Noroviruses (NoVs) are highly prevalent pathogens that cause sporadic and epidemic viral gastroenteritis. In the present study, we uncovered several strain-specific and shared host cell metabolic requirements of three murine norovirus (MNV) strains, the acute MNV-1 strain and the persistent CR3 and CR6 strains. While all three strains required glycolysis, glutaminolysis, and the pentose phosphate pathway for optimal infection of macrophages, only MNV-1 relied on host oxidative phosphorylation. Furthermore, the first metabolic flux analysis of NoV-infected cells revealed that both glycolysis and glutaminolysis are upregulated during MNV-1 infection of macrophages. Glutamine deprivation affected the MNV lifecycle at the stage of genome replication, resulting in decreased non-structural and structural protein synthesis, viral assembly, and egress. Mechanistic studies further showed that MNV infection and overexpression of the MNV non-structural protein NS1/2 increased the enzymatic activity of the rate-limiting enzyme glutaminase. In conclusion, the inaugural investigation of NoV-induced alterations to host glutaminolysis identified the first viral regulator of glutaminolysis for RNA viruses, which increases our fundamental understanding of virus-induced metabolic alterations.Author SummaryAll viruses critically depend on the host cells they infect to provide the necessary machinery and building blocks for successful replication. Thus, viruses often alter host metabolic pathways to increase the availability of key metabolites they require. Human noroviruses (HNoVs) are a major cause of acute non-bacterial gastroenteritis, leading to significant morbidity and economic burdens. To date, no vaccines or antivirals are available against NoVs, which demonstrates a need to better understand NoV biology, including the role host metabolism plays during infection. Using the murine norovirus (MNV) model, we show that host cell glutaminolysis is upregulated and required for optimal virus infection of macrophages. Additional data point to a model whereby the viral non-structural protein NS1/2 upregulates the enzymatic activity of glutaminase, the rate-limiting enzyme in glutaminolysis. Insights gained through investigating the role host metabolism plays in MNV replication may assist with improving HNoV cultivation methods and development of novel therapies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3