Translation inhibition efficacy does not determine thePlasmodium bergheiliver stage antiplasmodial efficacy of protein synthesis inhibitors

Author:

McLellan James L.,Hanson Kirsten K.

Abstract

AbstractProtein synthesis is a core cellular process, necessary throughout the complex lifecycle ofPlasmodiumparasites, thus specific translation inhibitors would be a valuable class of antimalarial drugs, capable of both treating symptomatic infections in the blood and providing chemoprotection by targeting the initial parasite population in the liver, preventing both human disease and parasite transmission back to the mosquito host. As increasing numbers of antiplasmodial compounds are identified that converge mechanistically at inhibition of cytoplasmic translation, regardless of molecular target or mechanism, it would be useful to gain deeper understanding of how their effectiveness as liver stage translation inhibitors relates to their chemoprotective potential. Here, we probed that relationship using theP. berghei-HepG2 liver stage infection model. Using o-propargyl puromycin-based labeling of the nascent proteome inP. berghei-infected HepG2 monolayers coupled with automated confocal feedback microscopy to generate unbiased, single parasite image sets ofP. bergheiliver stage translation, we determined translation inhibition EC50sfor five compounds, encompassing parasite-specific aminoacyl tRNA synthetase inhibitors, compounds targeting the ribosome in both host and parasite, as well as DDD107498, which targetsPlasmodiumeEF2, and is a leading antimalarial candidate compound being clinically developed as cabamiquine. Compounds were then tested at equivalent effective concentrations to compare the parasite response to, and recovery from, a brief period of translation inhibition in early schizogony, with parasites followed up to 120 hours post-infection to assess liver stage antiplasmodial effects of the treatment. Our data conclusively show that translation inhibition efficacyper sedoes not determine a translation inhibitor’s antiplasmodial efficacy. DDD107498 was the least effective translation inhibitor, yet exerted the strongest antimalarial effects at both 5x- and 10x EC50concentrations. We show compound-specific heterogeneity in single parasite and population responses to translation inhibitor treatment, with no single metric strongly correlated to release of hepatic merozoites for all compound, demonstrate that DDD107498 is capable of exerting antiplasmodial effects on translationally arrested liver stage parasites, and uncover unexpected growth dynamics during the liver stage. Our results demonstrate that translation inhibition efficacy cannot function as a proxy for antiplasmodial effectiveness, and highlight the importance of exploring the ultimate, as well as proximate, mechanisms of action of these compounds on liver stage parasites.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3