Genetic architecture, spatial heterogeneity, and the coevolutionary arms race between newts and snakes

Author:

Caudill VictoriaORCID,Ralph PeterORCID

Abstract

AbstractCoevolution between two species can lead to exaggerated phenotypes that vary in a correlated manner across space. However, the conditions under which we expect such spatially varying coevolutionary patterns in polygenic traits are not well-understood. We investigate the coevolutionary dynamics between two species undergoing reciprocal adaptation across space and time, using simulations inspired by theTarichanewt –Thamnophisgarter snake system. One striking observation from this system is that newts in some areas carry much more tetrodotoxin than in other areas, and garter snakes that live near more toxic newts tend to be more resistant to this toxin, a correlation seen across several broad geographic areas. Furthermore, snakes seem to be “winning” the coevolutinary arms race, i.e., having a high level of resistance compared to local newt toxicity, despite substantial variation in both toxicity and resistance across the range. We explore how possible genetic architectures of the toxin and resistance traits would affect the coevolutionary dynamics by manipulating both mutation rate and effect size of mutations across many simulations. We find that coevolutionary dynamics alone were not sufficient in our simulations to produce the striking mosaic of levels of toxicity and resistance observed in nature, but simulations with ecological heterogeneity (in trait costliness or interaction rate) did produce such patterns. We also find that in simulations, newts tend to “win” across most combinations of genetic architectures, although the species with higher mutational genetic variance tends to have an advantage.

Publisher

Cold Spring Harbor Laboratory

Reference52 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3