Abstract
1.AbstractPrimary cilia have been involved in the development and mechanosensation of various tissue types, including bone. In this study, we explored the mechanosensory role of primary cilia in bone growth and adaptation by examining two cilia specific genes, IFT88 and MKS5, required for proper cilia assembly and function. To analyze the role of primary cilia in osteoblasts, Osx1-GFP:Cre mice were bred with IFT88LoxP/LoxPto generate mice with a conditional knockout of primary cilia in osteoblasts. A significant decrease in body weight was observed in both male (p=0.0048) and female (p=0.0374) conditional knockout (cKO) mice compared to the wild type (WT) controls. The femurs of cKO mice were significantly shorter than that of the WT mice of both male (p=0.0003) and female (p=0.0019) groups. Histological analysis revealed a significant difference in MAR (p=0.0005) and BFR/BS (p<0.0001) between female cKO and WT mice. The BFR/BS of male cKO mice was 58.03% lower compared to WT mice. To further investigate the role of primary cilia in osteocytes, Dmp1-8kb-Cre mice were crossed with MKS5LoxP/LoxPto generate mice with defective cilia in osteocytes. In vivo axial ulnar loading was performed on 16-week-old mice for 3 consecutive days. The right ulnae were loaded for 120 cycles/day at a frequency of 2Hz with a peak force of 2.9N for female mice and 3.2N for male mice. Load-induced bone formation was measured using histomorphometry. The relative values of MS/BS, MAR and BFR/BS (loaded ulnae minus nonloaded ulnae) in male MKS5 cKO mice were decreased by 24.88%, 46.27% and 48.24%, respectively, compared to the controls. In the female groups, the rMS/BS was 52.5% lower, the rMAR was 27.58% lower, and the rBFR/BS was 41.54% lower in MKS5 cKO mice than the WT group. Histological analysis indicated that MKS5 cKO mice showed significantly decreased response to mechanical loading compared to the controls. Taken together, these data highlight a critical role of primary cilia in bone development and mechanotransduction, suggesting that the presence of primary cilia in osteoblasts play an important role in skeletal development, and primary cilia in osteocytes mediate mechanically induced bone formation.
Publisher
Cold Spring Harbor Laboratory