A Meta-model for ADMET Property Prediction Analysis

Author:

Padi SaralaORCID,Cardone AntonioORCID,Sriram Ram D.ORCID

Abstract

AbstractIn drug discovery analysis chemical absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties play a critical role. These properties allow the quantitative evaluation of a designed drug’s efficacy. Several machine learning models have been designed for the prediction of ADMET properties. However, no single method seems to enable the accurate prediction of these properties. In this paper, we build a meta-model that learns the best possible way to combine the scores from multiple heterogeneous machine learning models to effectively predict the ADMET properties. We evaluate the performance of our proposed model against the Therapeutics Data Commons (TDC) ADMET benchmark dataset. The proposed meta-model outperforms state-of-the-art methods such as XGBoost in the TDC leaderboard, and it ranks first in five and in the top three positions for fifteen out of twenty-two prediction tasks.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3