Multilayer meta-matching: translating phenotypic prediction models from multiple datasets to small data

Author:

Chen PanshengORCID,An LijunORCID,Wulan NarenORCID,Zhang ChenORCID,Zhang ShaoshiORCID,Ooi Leon Qi RongORCID,Kong RuORCID,Chen JianzhongORCID,Wu JianxiaoORCID,Chopra SidhantORCID,Bzdok DaniloORCID,Eickhoff Simon BORCID,Holmes Avram JORCID,Yeo B.T. ThomasORCID

Abstract

AbstractResting-state functional connectivity (RSFC) is widely used to predict phenotypic traits in individuals. Large sample sizes can significantly improve prediction accuracies. However, for studies of certain clinical populations or focused neuroscience inquiries, small-scale datasets often remain a necessity. We have previously proposed a “meta-matching” approach to translate prediction models from large datasets to predict new phenotypes in small datasets. We demonstrated large improvement of meta-matching over classical kernel ridge regression (KRR) when translating models from a single source dataset (UK Biobank) to the Human Connectome Project Young Adults (HCP-YA) dataset. In the current study, we propose two meta-matching variants (“meta-matching with dataset stacking” and “multilayer meta-matching”) to translate models from multiple source datasets across disparate sample sizes to predict new phenotypes in small target datasets. We evaluate both approaches by translating models trained from five source datasets (with sample sizes ranging from 862 participants to 36,834 participants) to predict phenotypes in the HCP-YA and HCP-Aging datasets. We find that multilayer meta-matching modestly outperforms meta-matching with dataset stacking. Both meta-matching variants perform better than the original “meta-matching with stacking” approach trained only on the UK Biobank. All meta-matching variants outperform classical KRR and transfer learning by a large margin. In fact, KRR is better than classical transfer learning when less than 50 participants are available for finetuning, suggesting the difficulty of classical transfer learning in the very small sample regime. The multilayer meta-matching model is publicly available at GITHUB_LINK.

Publisher

Cold Spring Harbor Laboratory

Reference74 articles.

1. Deriving reproducible biomarkers from multi-site resting-state data: An Autism-based example;NeuroImage,2017

2. Akiba, T. , Sano, S. , Yanase, T. , Ohta, T. , & Koyama, M . (2019). Optuna: A next-generation hyperparameter optimization framework. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2623–2631.

3. An open resource for transdiagnostic research in pediatric mental health and learning disorders;Scientific Data,2017

4. Alfaro-Almagro, F. , Jenkinson, M. , Bangerter, N. K. , Andersson, J. L. , Griffanti, L. , Douaud, G. , Sotiropoulos, S. N. , Jbabdi, S. , Hernandez-Fernandez, M. , & Vallee, E. (2018).

5. Image processing and Quality Control for the first 10,000 brain imaging datasets from UK Biobank. Neuroimage, 166, 400–424.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3