Abstract
AbstractDuring peri-puberty, bone growth and the attainment peak bone mass is driven predominantly by sex steroids. This is important when treating transgender and gender diverse youth, who have become increasingly present at pediatric clinics. Analogues of gonadotropin-releasing hormone (GnRH) are commonly prescribed to transgender and gender diverse youth prior to starting gender-affirming hormone therapy (GAHT). However, the impact of GnRH agonists on long bones with the addition of GAHT is relatively unknown. To explore this, we developed a trans-masculine model by introducing either GnRHa or vehicle treatment to female-born mice at a pre-pubertal age. This treatment was followed by male GAHT (testosterone, T) or control treatment three weeks later. Six weeks after T therapy, bone quality was compared between four treatment groups: Control (vehicle only), GnRHa-only, GnRHa + T, and T-only. Bone length/size, bone shape, mechanical properties, and trabecular morphology were modulated by GAHT. Independent of GnRHa administration, mice treated with T had shorter femurs, larger trabecular volume and increased trabecular number, higher trabecular bone mineral density, and wider superstructures on the surface of bone (e.g., third trochanters) when compared to control or GnRHa-only mice. In conclusion, prolonged treatment of GnRHa with subsequent GAHT treatment directly affect the composition, parameters, and morphology of the developing long bone. These findings provide insight to help guide clinical approaches to care for transgender and gender diverse youth.
Publisher
Cold Spring Harbor Laboratory