Geometric experience sculpts the development and dynamics of hippocampal sequential cell assemblies

Author:

Farooq Usman,Dragoi George

Abstract

AbstractEuclidean space is the fabric of the world we live in. Whether and how geometric experience shapes our spatial-temporal representations of the world remained unknown. We deprived rats of experience with crucial features of Euclidean geometry by rearing them inside translucent spheres, and compared activity of large hippocampal neuronal ensembles during navigation and sleep with that of cuboid cage-reared controls. Sphere-rearing from birth permitted emergence of accurate neuronal ensemble spatial codes and preconfigured and plastic time-compressed neuronal sequences. However, sphere-rearing led to diminished individual place cell tuning, similar neuronal mapping of different track ends/corners, and impaired neuronal pattern separation and plasticity of multiple linear track experiences, partly driven by reduced preconfigured network repertoires. Subsequent experience with multiple linear environments over four days largely reversed these effects, substantiating the role of geometric experience on hippocampal neural development. Thus, early-life experience with Euclidean geometry enriches the hippocampal repertoire of preconfigured neuronal patterns selected toward unique representation and discrimination of multiple linear environments.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3