Using a decision tree to predict COVID case numbers: a tutorial for beginners

Author:

Moctezuma LucyORCID,Rivera Lorena Benitez,van Nouhuijs Florentine,Orcales FayeORCID,Kim AllenORCID,Campbell Ross,Fuse MegumiORCID,Pennings Pleuni S.ORCID

Abstract

ABSTRACTMachine learning (ML) makes it possible to analyze large volumes of data and is an important tool in biomedical research. The use of ML methods can lead to improvements in diagnosis, treatment, and prevention of diseases. During the COVID pandemic, ML methods were used for predictions at the patient and community levels. Given the ubiquity of ML, it is important that future doctors, researchers and teachers get acquainted with ML and its contributions to research. Our goal is to make it easier for students and their professors to learn about ML. The learning module we present here is based on a small but relevant COVID dataset, videos, annotated code and the use of cloud computing platforms. The benefit of cloud computing platforms is that students don’t have to set up a coding environment on their computer. This saves time and is also an important democratization factor – allowing students to use old or borrowed computers (e.g., from a library), tablets or Chromebooks. As a result, this will benefit colleges geared toward underserved populations with limited computing infrastructure. We developed a beginner-friendly module focused on learning the basics of decision trees by applying them to COVID tabular data. It introduces students to basic terminology used in supervised ML and its relevance to research. The module includes two Python notebooks with pre-written code, one with practice exercises and another with its solutions. Our experience with biology students at San Francisco State University suggests that the material increases interest in ML.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3