Author:
Polycarpou Anastasia,Wagner-Gamble Tara,Greenlaw Roseanna,O’ Neill Lauren A.,Khan Hataf,Malim Michael,Romano Marco,Smolarek Dorota,Doores Katie,Wallis Russell,Klavinskis Linda S.,Sacks Steven
Abstract
AbstractCollectin-11 is a soluble C-type lectin produced at epithelial surfaces to initiate pathogen elimination by complement. Given the respiratory epithelium is a source of CL-11 and downstream complement-pathway components, we investigated the potential of CL-11 to impact the pathogenicity of SARS-CoV-2. While the SARS-CoV-2 spike trimer could bind CL-11 and trigger complement activation followed by MAC formation, the virus was resistant to lysis. Surprisingly, virus production by infected respiratory epithelial cells was enhanced by CL-11 opsonisation of virus but this effect was fully inhibited by sugar-blockade of CL-11. Moreover, SARS-CoV-2 spike protein expressed at the bronchial epithelial cell surface was associated with increased CL-11 binding and MAC formation. We propose that SARS-CoV-2 pathogenicity is exacerbated both by resistance to complement and CL-11 driven respiratory cell invasion and injury at the portal of entry. Contrary to expectation, CL-11 blockade could offer a novel approach to limit the pathogenicity of SARS-CoV-2.
Publisher
Cold Spring Harbor Laboratory