Diverse 3D cellular patterns underlie the development ofCardamine hirsutaandArabidopsis thalianaovules

Author:

Mody Tejasvinee AtulORCID,Rolle Alexander,Stucki Nico,Roll Fabian,Bauer Ulrich,Schneitz KayORCID

Abstract

AbstractA fundamental question in biology is how organ morphogenesis comes about. The ovules ofArabidopsis thalianahave been established as a successful model to study numerous aspects of tissue morphogenesis; however, little is known regarding the relative contributions and dynamics of differential tissue and cellular growth and architecture in establishing ovule morphogenesis in different species. To address this issue, we generated a 3D digital atlas ofCardamine hirsutaovule development with full cellular resolution. We combined quantitative comparative morphometrics and topological analysis to explore similarities and differences in the 3D cellular architectures underlying ovule development of the two species. We discovered that they show diversity in the way the three radial cell layers of the primordium contribute to its growth, in the formation of a new cell layer in the inner integument and, in certain cases, in the topological properties of the 3D cell architectures of homologous tissues despite their similar shape. Our work demonstrates the power of comparative 3D cellular morphometry and the importance of internal tissues and their cellular architecture in organ morphogenesis.Summary StatementQuantitative morphometric comparison of 3D digital ovules at full cellular resolution reveals diversity in internal 3D cellular architectures between similarly shaped ovules ofCardamine hirsutaandArabidopsis thaliana.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3