Abstract
AbstractSeveral studies predicting Functional Connectivity (FC) from Structural Connectivity (SC) at an individual level have been published in recent years, each promising increased performance and utility. We investigated three of these studies, analyzing whether the results truly represent a meaningful individual-level mapping from SC to FC. Using data from the Human Connectome Project shared accross the three studies, we constructed a predictor by averaging FC of training data and analyzed its performance in the same way. In each case, we found that this group average FC is an equivalent or better predictor of individual FC than the predictive models in terms of raw prediction performance. Furthermore, we showed that additional analyses performed by the authors of the three studies, in which they attempt to show that their predicted FC has value beyond raw prediction performance, could also be reproduced using the group average FC predictor. This makes it unclear whether any of the three methods represent a meaningful individual-level predictive model. We conclude that either the applied methods are not appropriate for the data, that the sample size is too small, or that the data itself does not contain sufficient information to learn a mapping from SC to FC e.g. due to the amount of noise in MRI measurements. We advise future individual-level studies to always explicitly report their results in comparison to the performance of the group average, and carefully demonstrate that their predictions contain meaningful individual-level information. Finally, we believe that investigating alternatives for the construction of SC and FC may improve the chances of developing a meaningful individual-level mapping from SC to FC.
Publisher
Cold Spring Harbor Laboratory