LLM Instruction-Example Adaptive Prompting (LEAP) Framework for Clinical Relation Extraction

Author:

Zhou Huixue,Li Mingchen,Xiao Yongkang,Yang Han,Zhang RuiORCID

Abstract

ABSTRACTObjectiveTo investigate the demonstration in Large Language Models (LLMs) for clinical relation extraction. We focus on examining two types of adaptive demonstration: instruction adaptive prompting, and example adaptive prompting to understand their impacts and effectiveness.Materials and MethodsThe study unfolds in two stages. Initially, we explored a range of demonstration components vital to LLMs’ clinical data extraction, such as task descriptions and examples, and tested their combinations. Subsequently, we introduced the Instruction-Example Adaptive Prompting (LEAP) Framework, a system that integrates two types of adaptive prompts: one preceding instruction and another before examples. This framework is designed to systematically explore both adaptive task description and adaptive examples within the demonstration. We evaluated LEAP framework’s performance on the DDI and BC5CDR chemical interaction datasets, applying it across LLMs such as Llama2-7b, Llama2-13b, and MedLLaMA_13B.ResultsThe study revealed thatInstruction + Options + Examplesand its expanded form substantially raised F1-scores over the standardInstruction + Optionsmode. LEAP framework excelled, especially with example adaptive prompting that outdid traditional instruction tuning across models. Notably, the MedLLAMA-13b model scored an impressive 95.13 F1 on the BC5CDR dataset with this method. Significant improvements were also seen in the DDI 2013 dataset, confirming the method’s robustness in sophisticated data extraction.ConclusionThe LEAP framework presents a promising avenue for refining LLM training strategies, steering away from extensive finetuning towards more contextually rich and dynamic prompting methodologies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3