AAV-mediated interneuron-specific gene replacement for Dravet syndrome

Author:

Mich John K.ORCID,Ryu Jiyun,Wei Aguan D.ORCID,Gore Bryan B.ORCID,Guo RongORCID,Bard Angela M.,Martinez Refugio A.ORCID,Bishaw YemeserachORCID,Luber Em,Oliveira Santos Luiz M.,Miranda Nicole,Ramirez Jan-MarinoORCID,Ting Jonathan T.ORCID,Lein Ed S.ORCID,Levi Boaz P.ORCID,Kalume Franck K.ORCID

Abstract

AbstractDravet syndrome (DS) is a devastating developmental epileptic encephalopathy marked by treatment-resistant seizures, developmental delay, intellectual disability, motor deficits, and a 10-20% rate of premature death. Most DS patients harbor loss-of-function mutations in one copy ofSCN1A, which has been associated with inhibitory neuron dysfunction. Here we developed an interneuron-targeting AAV humanSCN1Agene replacement therapy using cell class-specific enhancers. We generated a split-intein fusion form ofSCN1Ato circumvent AAV packaging limitations and deliverSCN1Avia a dual vector approach using cell class-specific enhancers. These constructs produced full-length NaV1.1 protein and functional sodium channels in HEK293 cells and in brain cellsin vivo. After packaging these vectors into enhancer-AAVs and administering to mice, immunohistochemical analyses showed telencephalic GABAergic interneuron-specific and dose-dependent transgene biodistribution. These vectors conferred strong dose-dependent protection against postnatal mortality and seizures in two DS mouse models carrying independent loss-of-function alleles ofScn1a,at two independent research sites, supporting the robustness of this approach. No mortality or toxicity was observed in wild-type mice injected with single vectors expressing either the N-terminal or C-terminal halves ofSCN1A, or the dual vector system targeting interneurons. In contrast, nonselective neuronal targeting ofSCN1Aconferred less rescue against mortality and presented substantial preweaning lethality. These findings demonstrate proof-of-concept that interneuron-specific AAV-mediatedSCN1Agene replacement is sufficient for significant rescue in DS mouse models and suggest it could be an effective therapeutic approach for patients with DS.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3