Curvature-induced lipid sorting beyond the critical packing parameter

Author:

König M.ORCID,de Vries R.ORCID,Grünewald F.ORCID,Marrink S.J.ORCID,Pezeshkian W.ORCID

Abstract

AbstractOver the last few decades, the spatial organization of biomembranes has received a lot of attention. With the fluid mosaic model, Singer and Nicolson proposed that biomembranes behave as two-dimensional fluids, allowing proteins and lipids to diffuse freely and thus react to external stimuli. Biological functionality and membrane organization are intricately linked to each other, however, how these organizations emerge is yet to be established. Here we use coarse-grained molecular dynamics simulations to explore the relationship between membrane shape and lateral organization at the nanoscale for a broad range of lipid mixtures. Our results illustrate that membrane curvature and lateral organization are intimately linked at the nanoscale and the relationship is much more complicated compared to the traditional views, in particular the lipid shape concept. Furthermore, we show that large membrane curvature can disrupt phase separation, line tension, and interleaflet coupling leading to non-intuitive lipid sorting. Our findings highlight how curvature-driven sorting can alter the phase behavior of lipid mixtures, which could be crucial for cellular functionality.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling membranes in situ;Current Opinion in Structural Biology;2024-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3