Dissecting and improving gene regulatory network inference using single-cell transcriptome data

Author:

Xue Lingfeng,Wu Yan,Lin Yihan

Abstract

Single-cell transcriptome data has been widely used to reconstruct gene regulatory networks (GRNs) controlling critical biological processes such as development and differentiation. Although a growing list of algorithms has been developed to infer GRNs using such data, achieving an inference accuracy consistently higher than random guessing has remained challenging. To address this, it is essential to delineate how the accuracy of regulatory inference is limited. Here, we systematically characterized factors limiting the accuracy of inferred GRNs and demonstrated that using pre-mRNA information can help improve regulatory inference compared to the typically used information (i.e., mature mRNA). Using kinetic modeling and simulated single-cell data sets, we showed that target genes’ mature mRNA levels often fail to accurately report upstream regulatory activities because of gene-level and network-level factors, which can be improved by using pre-mRNA levels. We tested this finding on public single-cell RNA-seq data sets using intronic reads as proxies of pre-mRNA levels and can indeed achieve a higher inference accuracy compared to using exonic reads (corresponding to mature mRNAs). Using experimental data sets, we further validated findings from the simulated data sets and identified factors such as transcription factor activity dynamics influencing the accuracy of pre-mRNA-based inference. This work delineates the fundamental limitations of gene regulatory inference and helps improve GRN inference using single-cell RNA-seq data.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

Cold Spring Harbor Laboratory

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3