Thermodynamic impacts of combinatorial mutagenesis on protein conformational stability: precise, high-throughput measurement by Thermofluor

Author:

Weinreb Violetta,Weinreb Gabriel,Chandrasekaran Srinivas NiranjORCID,Das Jhuma,Dokholyan Nikolay V.ORCID,Carter Charles W.ORCID

Abstract

ABSTRACTThe D1 switch is a packing motif, broadly distributed in the proteome, that couples tryptophanyl-tRNA synthetase (TrpRS) domain movement to catalysis and specificity, thereby creating an escapement mechanism essential to free-energy transduction. The escapement mechanism arose from analysis of an extensive set of combinatorial mutations to this motif, which allowed us to relate mutant-induced changes quantitatively to both kinetic and computational parameters during catalysis. To further characterize the origins of this escapement mechanism in differential TrpRS conformational stabilities, we use high-throughput Thermofluor measurements for the 16 variants to extend analysis of the mutated residues to their impact on unliganded TrpRS stability. Aggregation of denatured proteins complicates thermodynamic interpretations of denaturation experiments. The free energy landscape of a liganded TrpRS complex, carried out for different purposes, closely matches the volume, helix content, and transition temperatures of Thermoflour and CD melting profiles. Regression analysis using the combinatorial design matrix accounts for >90% of the variance in Tms of both Thermofluor and CD melting profiles. We argue that the agreement of experimental melting temperatures with both computational free energy landscape and with Regression modeling means that experimental melting profiles can be used to analyze the thermodynamic impact of combinatorial mutations. Tertiary packing and aromatic stacking of Phenylalanine 37 exerts a dominant stabilizing effect on both native and molten globular states. The TrpRS Urzyme structure remains essentially intact at the highest temperatures explored by the simulations.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3