A catch-bond drives stator mechanosensitivity in the Bacterial Flagellar Motor

Author:

Nord AL,Gachon E,Perez-Carrasco R,Nirody JA,Barducci A,Berry RM,Pedaci FORCID

Abstract

AbstractThe bacterial flagellar motor (BFM) is the rotary motor which powers the swimming and swarming of many motile bacteria. The torque is provided by stator units, ion motive force powered ion channels known to assemble and disassemble dynamically in the BFM. This turnover is mechano-sensitive, with the number of engaged units dependent upon the viscous load experienced by the motor through the flagellum. However, the molecular mechanism driving BFM mechano-sensitivity is unknown. Here we directly measure the kinetics of arrival and departure of the stator units in individual wild-type motors via analysis of high-resolution recordings of motor speed, while dynamically varying the load on the motor via external magnetic torque. Obtaining the real-time stator stoichiometry before and after periods of forced motor stall, we measure both the number of active stator units at steady-state as a function of the load and the kinetic association and dissociation rates, by fitting the data to a reversible random sequential adsorption model. Our measurements indicate that BFM mechano-sensing relies on the dissociation rate of the stator units, which decreases with increasing load, while their association rate remains constant. This implies that the lifetime of an active stator unit assembled within the BFM increases when a higher force is applied to its anchoring point in the cell wall, providing strong evidence that a catch-bond mechanism can explain the mechano-sensitivity of the BFM.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3