A methodology for morphological feature extraction and unsupervised cell classification

Author:

Bhaskar DhananjayORCID,Lee Darrick,Knútsdóttir Hildur,Tan Cindy,Zhang MoHan,Dean Pamela,Roskelley Calvin,Edelstein-Keshet Leah

Abstract

AbstractCell morphology is an important indicator of cell state, function, stage of development, and fate in both normal and pathological conditions. Cell shape is among key indicators used by pathologists to identify abnormalities or malignancies. With rapid advancements in the speed and amount of biological data acquisition, including images and movies of cells, computer-assisted identification and analysis of images becomes essential. Here, we report on techniques for recognition of cells in microscopic images and automated cell shape classification. We illustrate how our unsupervised machine-learning-based approach can be used to classify distinct cell shapes from a large number of microscopic images.Technical AbstractWe develop a methodology to segment cells from microscopy images and compute quantitative descriptors that characterize their morphology. Using unsupervised techniques for dimensionality reduction and density-based clustering, we perform label-free cell shape classification. Cells are identified with minimal user input using mathematical morphology and region-growing segmentation methods. Physical quantities describing cell shape and size (including area, perimeter, Feret diameters, etc.) are computed along with other features including shape factors and Hu’s image moments.Correlated features are combined to obtain a low-dimensional (2-D or 3-D) embedding of data points corresponding to individual segmented cell shapes. Finally, a hierarchical density-based clustering algorithm (HDBSCAN) is used to classify cells. We compare cell classification results obtained from different combinations of features to identify a feature set that delivers optimum classification performance for our test data consisting of phase-contrast microscopy images of a pancreatic-cancer cell line, MIA PaCa-2.

Publisher

Cold Spring Harbor Laboratory

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3