Quantifying and understanding well-to-well contamination in microbiome research

Author:

Minich Jeremiah J,Sanders Jon G,Amir Amnon,Humphrey Greg,Gilbert Jack,Knight RobORCID

Abstract

AbstractMicrobial sequences inferred as belonging to one sample may not have originated from that sample. Such contamination may arise from laboratory or reagent sources or from physical exchange between samples. This study seeks to rigorously assess the behavior of this often-neglected between-sample contamination. Using unique bacteria each assigned a particular well in a plate, we assess the frequency at which sequences from each source appears in other wells. We evaluate the effects of different DNA extraction methods performed in two labs using a consistent plate layout including blanks, low biomass, and high biomass samples. Well-to-well contamination occurred primarily during DNA extraction, and to a lesser extent in library preparation, while barcode leakage was negligible. Labs differed in the levels of contamination. DNA extraction methods differed in their occurrences and levels of well-to-well contamination, with robotic methods having more well-to-well contamination while manual methods having higher background contaminants. Well-to-well contamination was observed to occur primarily in neighboring samples, with rare events up to 10 wells apart. The effect of well-to-well was greatest in samples with lower biomass, and negatively impacted metrics of alpha and beta diversity. Our work emphasizes that sample contamination is a combination of crosstalk from nearby wells and background contaminants. To reduce well-to-well effects, samples should be randomized across plates, and samples of similar biomass processed together. Researchers should evaluate well-to-well contamination in study design and avoid removal of taxa or OTUs appearing in negative controls, as many will be microbes from other samples rather than reagent contaminants.ImportanceMicrobiome research has uncovered magnificent biological and chemical stories across nearly all areas of life science, at times creating controversy when findings reveal fantastic descriptions of microbes living and even thriving in once thought to be sterile environments. Scientists have refuted many of these claims because of contamination, which has led to robust requirements including use of controls for validating accurate portrayals of microbial communities. In this study, we describe a previously undocumented form of contamination, well-to-well contamination and show that contamination primarily occurs during DNA extraction rather than PCR, is highest in plate-based methods as compared to single tube extraction, and occurs in higher frequency in low biomass samples. This finding has profound importance on the field as many current techniques to ‘decontaminate’ a dataset simply relies on an assumption that microbial reads found in blanks are contaminants from ‘outside’ namely the reagents or consumables.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3