The Polycomb group protein Ring1 regulates dorsoventral patterning of the mouse telencephalon

Author:

Eto Hikaru,Kishi Yusuke,Koseki Haruhiko,Gotoh Yukiko

Abstract

SummaryPatterning of the dorsal-ventral (D-V) axis of the mammalian telencephalon is fundamental to the formation of distinct functional regions including the neocortex and ganglionic eminences. Morphogenetic signaling by bone morphogenetic protein (BMP), Wnt, Sonic hedgehog (Shh), and fibroblast growth factor (FGF) pathways determines regional identity along this axis. It has remained unclear, however, how region-specific expression patterns of these morphogens along the D-V axis are established, especially at the level of epigenetic (chromatin) regulation. Here we show that epigenetic regulation by Ring1, an essential Polycomb group (PcG) protein, plays a key role in formation of ventral identity in the mouse telencephalon. Deletion of the Ring1b or both Ring1a and Ring1b genes in neuroepithelial cells of the mouse embryo attenuated expression of the gene for Shh, a key morphogen for induction of ventral identity, and induced misexpression of dorsal marker genes including those for BMP and Wnt ligands in the ventral telencephalon. PcG protein–mediated trimethylation of histone H3 on lysine-27 (H3K27me3) was also apparent at BMP and Wnt ligand genes in wild-type embryos. Importantly, forced activation of Wnt or BMP signaling repressed the expression of Shh in organotypic and dissociated cultures of the early-stage telencephalon. Our results thus indicate that epigenetic regulation by PcG proteins—and, in particular, that by Ring1— confers a permissive state for the induction of Shh expression through suppression of BMP and Wnt signaling pathways, which in turn allows the development of ventral identity in the telencephalon.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3