Abstract
HighlightsThe manuscript presents a method to calculate sample sizes for fMRI experimentsThe power analysis is based on the estimation of the mixture distribution of null and active peaksThe methodology is validated with simulated and real data.1AbstractMounting evidence over the last few years suggest that published neuroscience research suffer from low power, and especially for published fMRI experiments. Not only does low power decrease the chance of detecting a true effect, it also reduces the chance that a statistically significant result indicates a true effect (Ioannidis, 2005). Put another way, findings with the least power will be the least reproducible, and thus a (prospective) power analysis is a critical component of any paper. In this work we present a simple way to characterize the spatial signal in a fMRI study with just two parameters, and a direct way to estimate these two parameters based on an existing study. Specifically, using just (1) the proportion of the brain activated and (2) the average effect size in activated brain regions, we can produce closed form power calculations for given sample size, brain volume and smoothness. This procedure allows one to minimize the cost of an fMRI experiment, while preserving a predefined statistical power. The method is evaluated and illustrated using simulations and real neuroimaging data from the Human Connectome Project. The procedures presented in this paper are made publicly available in an online web-based toolbox available at www.neuropowertools.org.
Publisher
Cold Spring Harbor Laboratory
Cited by
50 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献