Polarly localized EccE1 is required for ESX-1 function and stabilization of ESX-1 membrane proteins in Mycobacterium tuberculosis

Author:

Soler-Arnedo Paloma,Sala Claudia,Zhang Ming,Cole Stewart T.ORCID,Piton Jérémie

Abstract

ABSTRACTMycobacterium tuberculosis is a slow-growing intracellular bacterium with the ability to induce host cell death and persist indefinitely in the human body. This pathogen uses the specialized ESX-1 secretion system to secrete virulence factors and potent immunogenic effectors required for disease progression. ESX-1 is a multi-subunit apparatus with a membrane complex that is predicted to form a pore in the cytoplasmic membrane. In M. tuberculosis this complex is composed of five membrane proteins: EccB1, EccCa1, EccCb1, EccD1, EccE1. In this study, we have characterized the membrane component EccE1 and found that deletion of eccE1 lowers the levels of EccB1, EccCa1 and EccD1 thereby abolishing ESX-1 secretion and attenuating M. tuberculosis ex vivo. Surprisingly, secretion of EspB was not affected by loss of EccE1. Furthermore, EccE1 was found to be a membrane- and cell-wall associated protein that needs the presence of other ESX-1 components to assemble into a stable complex at the poles of M. tuberculosis. Overall, this investigation provides new insights into the role of EccE1 and its localization in M. tuberculosis.IMPORTANCETuberculosis (TB), the world’s leading cause of death of humans from an infectious disease, is caused by the intracellular bacterium Mycobacterium tuberculosis. The development of successful strategies to control TB requires better understanding of the complex interactions between the pathogen and human host. We investigated the contribution of EccE1, a membrane protein, to the function of the ESX-1 secretion system, the major virulence determinant of M. tuberculosis. By combining genetic analysis of selected mutants with eukaryotic cell biology and proteomics, we demonstrate that EccE1 is critical for ESX-1 function, secretion of effector proteins and pathogenesis. Our research improves knowledge of the molecular basis of M. tuberculosis virulence and enhances our understanding of pathogenesis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3