Functional analysis of OCTN2 and ATB0,+ in normal human airway epithelial cells

Author:

Rotoli Bianca Maria,Visigalli Rossana,Barilli Amelia,Ferrari Francesca,Bianchi Massimiliano G.,Di Lascia Maria,Riccardi Benedetta,Puccini Paola,Dall’Asta ValeriaORCID

Abstract

ABSTRACTIn human, OCTN2 (SLC22A5) and ATB0,+ (SLC6A14) transporters mediate the uptake of L-carnitine, essential for the transport of fatty acids into mitochondria and the subsequent degradation by β-oxidation. Aim of the present study is to characterize L-carnitine transport in EpiAirway™, a 3D organotypic in vitro model of primary human tracheal-bronchial epithelial cells that form a fully differentiated, pseudostratified columnar epithelium at air-liquid interface (ALI) condition. In parallel, Calu-3 monolayers grown at ALI were used as comparison. In EpiAirway™, ATB0,+ was highly expressed and functional on the apical side while OCTN2 transporter was active on the basolateral side. Calu-3 cells showed a different pattern of expression and activity for ATB0,+: indeed, L-carnitine uptake on apical side was evident in Calu-3 at 8 days of culture but not in fully differentiated 21d ALI culture. As both ATB0,+ and OCTN2, beyond transporting L-carnitine, have a significant potential as delivery systems for drugs, the identification of these transporters in EpiAirway™ can open new fields of investigation in the studies of drug inhalation and pulmonary delivery.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3