Abnormal morphology biases haematocrit distribution in tumour vasculature and contributes to heterogeneity in tissue oxygenation

Author:

Bernabeu Miguel O.ORCID,Köry Jakub,Grogan James A.,Markelc Bostjan,Beardo Albert,d’Avezac Mayeul,Enjalbert Romain,Kaeppler Jakob,Daly Nicholas,Hetherington James,Krüger Timm,Maini Philip K.,Pitt-Francis Joe M.,Muschel Ruth J.,Alarcón Tomás,Byrne Helen M.

Abstract

AbstractOxygen heterogeneity in solid tumours is recognised as a limiting factor for therapeutic efficacy. This heterogeneity arises from the abnormal vascular structure of the tumour, but the precise mechanisms linking abnormal structure and compromised oxygen transport are only partially understood. In this paper, we investigate the role that RBC transport plays in establishing oxygen heterogeneity in tumour tissue. We focus on heterogeneity driven by network effects, which are challenging to observe experimentally due to the reduced fields of view typically considered. Motivated by our findings of abnormal vascular patterns linked to deviations from current RBC transport theory, we calculate average vessel lengths and diameters from tumour allografts of three cancer cell lines and observe a substantial reduction in the ratio compared to physiological conditions. Mathematical modelling reveals that small values of the ratio λ (i.e. λ < 6) can bias haematocrit distribution in tumour vascular networks and drive heterogeneous oxygenation of tumour tissue. Finally, we show an increase in the value of λ in tumour vascular networks following treatment with the anti-angiogenic cancer agent DC101. Based on our findings, we propose λ as an effective way of monitoring the efficacy of antiangiogenic agents and as a proxy measure of perfusion and oxygenation in tumour tissue undergoing anti-angiogenic treatment.Significance statementOxygen heterogeneity in solid tumours is recognised as a limiting factor for therapeutic efficacy. This heterogeneity arises from the abnormal tumour vascular structure. We investigate the role that anomalies in RBC transport play in establishing oxygen heterogeneity in tumour tissue. We introduce a metric to characterise tumour vasculature (mean vessel length-to-diameter ratio, λ) and demonstrate how it predicts tissue oxygen heterogeneity. We also report an increase in λ following treatment with the antiangiogenic agent DC101. Together, we propose λ as an effective way of monitoring the action of anti-angiogenic agents and a proxy measure of oxygen heterogeneity in tumour tissue. Unravelling the causal relationship between tumour vascular structure and tissue oxygenation will pave the way for new personalised therapeutic approaches.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3